Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
2.
Trends Biotechnol ; 41(3): 358-373, 2023 03.
Article in English | MEDLINE | ID: covidwho-2255649

ABSTRACT

Cellular therapies are poised to transform the field of medicine by restoring dysfunctional tissues and treating various diseases in a dynamic manner not achievable by conventional pharmaceutics. Spanning various therapeutic areas inclusive of cancer, regenerative medicine, and immune disorders, cellular therapies comprise stem or non-stem cells derived from various sources. Despite numerous clinical approvals or trials underway, the host immune response presents a critical impediment to the widespread adoption and success of cellular therapies. Here, we review current research and clinical advances in immunomodulatory strategies to mitigate immune rejection or promote immune tolerance to cellular therapies. We discuss the potential of these immunomodulatory interventions to accelerate translation or maximize the prospects of improving therapeutic outcomes of cellular therapies for clinical success.


Subject(s)
Cell- and Tissue-Based Therapy , Immune Tolerance , Regenerative Medicine , Immunity
4.
J Autoimmun ; 132: 102856, 2022 10.
Article in English | MEDLINE | ID: covidwho-2149991

ABSTRACT

Systemic lupus erythematosus (SLE) is a severe chronic systemic autoimmune disease caused by complicated interactions among genetic, epigenetic, and immunological factors. Dendritic cells (DCs), as the most important antigen-presenting cells, play pivotal roles in both triggering pathogenic autoimmune responses, and also maintaining immune tolerance. Distinct DC subsets are endowed with diversified phenotypic and functional characteristics, and play variable roles in shaping immunity and tolerance during the development of SLE. Abnormal activation or disabled tolerance of DCs not only triggers aberrant production of inflammatory mediators and type I interferons leading to pathogenic innate immunity and autoinflammation, but also causes an imbalance of effector versus regulatory T cell responses and sustained production of auto-antibodies from B cells, leading to continuously amplified autoimmune pathogenesis in SLE. Over the past decade, significant progress has been made in revealing the changes of DC accumulation or function in SLE, and how the functional dysregulations of DCs contribute to the pathological inflammation of SLE, leading to breakthroughs in DC-based therapeutics in the treatment of SLE. In this review, we review the recent advances in the activation and function of the major DC subsets in the pathogenesis of SLE as well as the therapeutic potential of targeting DC subset or status against SLE.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , Humans , Dendritic Cells , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/therapy , Immune Tolerance , B-Lymphocytes/pathology
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143242

ABSTRACT

Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , SARS-CoV-2 , Immune Tolerance , Dendritic Cells , Antigens , Peptides , Apoptosis
8.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: covidwho-1900499

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
9.
Annu Rev Immunol ; 40: 525-557, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1813277

ABSTRACT

Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection.We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions.


Subject(s)
Adaptive Immunity , Dendritic Cells , Animals , Cell Differentiation , Humans , Immune Tolerance , Macrophages
10.
J Immunol Res ; 2022: 5545319, 2022.
Article in English | MEDLINE | ID: covidwho-1807699

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been raised as a pandemic disease since December 2019. Immunosuppressive cells including T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are key players in immunological tolerance and immunoregulation; however, they contribute to the pathogenesis of different diseases including infections. Tregs have been shown to impair the protective role of CD8+ T lymphocytes against viral infections. In COVID-19 patients, most studies reported reduction, while few other studies found elevation in Treg levels. Moreover, Tregs have a dual role, depending on the different stages of COVID-19 disease. At early stages of COVID-19, Tregs have a critical role in decreasing antiviral immune responses, and consequently reducing the viral clearance. On the other side, during late stages, Tregs reduce inflammation-induced organ damage. Therefore, inhibition of Tregs in early stages and their expansion in late stages have potentials to improve clinical outcomes. In viral infections, MDSC levels are highly increased, and they have the potential to suppress T cell proliferation and reduce viral clearance. Some subsets of MDSCs are expanded in the blood of COVID-19 patients; however, there is a controversy whether this expansion has pathogenic or protective effects in COVID-19 patients. In conclusion, further studies are required to investigate the role and function of immunosuppressive cells and their potentials as prognostic biomarkers and therapeutic targets in COVID-19 patients.


Subject(s)
COVID-19 , Myeloid-Derived Suppressor Cells , Humans , Immune Tolerance , Immunosuppressive Agents , Pandemics , T-Lymphocytes, Regulatory
11.
Front Immunol ; 12: 749774, 2021.
Article in English | MEDLINE | ID: covidwho-1789370

ABSTRACT

The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.


Subject(s)
Autoimmune Diseases/epidemiology , Autoimmunity , COVID-19/epidemiology , COVID-19/immunology , Diet/methods , Hygiene , Immune Tolerance , Pandemics , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/virology , Humans , Incidence , Severity of Illness Index
12.
PLoS One ; 17(3): e0266036, 2022.
Article in English | MEDLINE | ID: covidwho-1770755

ABSTRACT

Under the condition of resource tolerance, engineering construction projects face the problem of labor force balance in the working face. Notably, a deviation occurs between the distribution and certain demand of the labor force in the limited working face, which affects the realization of an extremely short construction period. To address this problem, we first introduced the stochastic coefficient of labor force equilibrium to measure the degree of labor balance. Second, a labor force equilibrium model with the realization goal of an extremely short construction period was established. Then, the standard particle swarm optimization (PSO) algorithm was improved from two perspectives to solve the proposed model. The update equation was rounded to solve practical project problems, and a dynamic variable inertia weight was adopted to ensure the PSO algorithm accuracy and convergence speed. Finally, through case analysis, we determined the extremely short construction period and best labor force distribution scheme. Moreover, the case results revealed that the established model is simple, operable and practical and that the proposed algorithm achieves a high search accuracy and efficiency in the model solution process. Overall, under the condition of resource tolerance, this study provides scientific and effective references for managers to realize an extremely short construction period.


Subject(s)
Algorithms , Labor, Obstetric , Data Collection , Drug Tolerance , Female , Humans , Immune Tolerance , Pregnancy
13.
Semin Respir Crit Care Med ; 42(6): 839-858, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768958

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first identified as a novel coronavirus in Wuhan, Hubei province, central China, in December 2019, and is responsible for the 2019-to-present pandemic. According to the most recent data released by the World Health Organization, more than 200 million people have been infected by SARS-CoV-2 so far, and more than 4 million people died worldwide. Although our knowledge on SARS-CoV-2 and COVID-19 is constantly growing, data on COVID-19 in immunocompromised patients are still limited. The aim of the present systematic review is to describe clinical picture, disease severity, proposed treatment regimen, and response to vaccination in patients with different types and severity of immunosuppression.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Immunocompromised Host/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , COVID-19/mortality , COVID-19/therapy , COVID-19 Vaccines/immunology , Humans , Immune Tolerance , Immunosuppression Therapy
15.
J Leukoc Biol ; 111(2): 497-508, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669515

ABSTRACT

Coronaviruses (CoVs) are RNA viruses that cause human respiratory infections. Zoonotic transmission of the SARS-CoV-2 virus caused the recent COVID-19 pandemic, which led to over 2 million deaths worldwide. Elevated inflammatory responses and cytotoxicity in the lungs are associated with COVID-19 severity in SARS-CoV-2-infected individuals. Bats, which host pathogenic CoVs, operate dampened inflammatory responses and show tolerance to these viruses with mild clinical symptoms. Delineating the mechanisms governing these host-specific inflammatory responses is essential to understand host-virus interactions determining the outcome of pathogenic CoV infections. Here, we describe the essential role of inflammasome activation in determining COVID-19 severity in humans and innate immune tolerance in bats that host several pathogenic CoVs. We further discuss mechanisms leading to inflammasome activation in human SARS-CoV-2 infection and how bats are molecularly adapted to suppress these inflammasome responses. We also report an analysis of functionally important residues of inflammasome components that provide new clues of bat strategies to suppress inflammasome signaling and innate immune responses. As spillover of bat viruses may cause the emergence of new human disease outbreaks, the inflammasome regulation in bats and humans likely provides specific strategies to combat the pathogenic CoV infections.


Subject(s)
COVID-19/pathology , Immune Tolerance , Immunity, Innate , Inflammasomes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Chiroptera , Humans , Inflammasomes/metabolism , Phylogeny
16.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: covidwho-1625756

ABSTRACT

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host-pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.


Subject(s)
Chiroptera/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Chiroptera/virology , Disease Reservoirs/virology , Humans , Immune Tolerance , Virus Diseases/immunology , Virus Diseases/transmission , Viruses/pathogenicity
17.
Curr Opin Immunol ; 72: 286-297, 2021 10.
Article in English | MEDLINE | ID: covidwho-1606955

ABSTRACT

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.


Subject(s)
COVID-19/immunology , Candidiasis, Cutaneous/immunology , Polyendocrinopathies, Autoimmune/immunology , T-Lymphocytes/immunology , Transcription Factors/genetics , Animals , Autoimmunity , Bronchiectasis , COVID-19/epidemiology , COVID-19/genetics , Candidiasis, Cutaneous/epidemiology , Candidiasis, Cutaneous/genetics , Clonal Selection, Antigen-Mediated/genetics , Disease Susceptibility , Humans , Immune Tolerance/genetics , Polyendocrinopathies, Autoimmune/epidemiology , Polyendocrinopathies, Autoimmune/genetics
18.
J Clin Invest ; 131(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1591538

ABSTRACT

BackgroundAntibody-based strategies for COVID-19 have shown promise in prevention and treatment of early disease. COVID-19 convalescent plasma (CCP) has been widely used but results from randomized trials supporting its benefit in hospitalized patients with pneumonia are limited. Here, we assess the efficacy of CCP in severely ill, hospitalized adults with COVID-19 pneumonia.MethodsWe performed a randomized control trial (PennCCP2), with 80 adults hospitalized with COVID-19 pneumonia, comparing up to 2 units of locally sourced CCP plus standard care versus standard care alone. The primary efficacy endpoint was comparison of a clinical severity score. Key secondary outcomes include 14- and 28-day mortality, 14- and 28-day maximum 8-point WHO ordinal score (WHO8) score, duration of supplemental oxygenation or mechanical ventilation, respiratory SARS-CoV-2 RNA, and anti-SARS-CoV-2 antibodies.ResultsEighty hospitalized adults with confirmed COVID-19 pneumonia were enrolled at median day 6 of symptoms and day 1 of hospitalization; 60% were anti-SARS-CoV-2 antibody seronegative. Participants had a median of 3 comorbidities, including risk factors for severe COVID-19 and immunosuppression. CCP treatment was safe and conferred significant benefit by clinical severity score (median [MED] and interquartile range [IQR] 10 [5.5-30] vs. 7 [2.75-12.25], P = 0.037) and 28-day mortality (n = 10, 26% vs. n = 2, 5%; P = 0.013). All other prespecified outcome measures showed weak evidence toward benefit of CCP.ConclusionTwo units of locally sourced CCP administered early in hospitalization to majority seronegative participants conferred a significant benefit in clinical severity score and 28-day mortality. Results suggest CCP may benefit select populations, especially those with comorbidities who are treated early.Trial RegistrationClinicalTrials.gov NCT04397757.FundingUniversity of Pennsylvania.


Subject(s)
COVID-19/therapy , Pneumonia, Viral/therapy , SARS-CoV-2 , Adult , Aged , Antibodies, Viral , Female , Hospitalization , Humans , Immune Tolerance , Immunization, Passive/methods , Immunosuppression Therapy , Incidence , Male , Middle Aged , Oxygen/therapeutic use , RNA, Viral , Respiration, Artificial , Risk Factors , Treatment Outcome , COVID-19 Serotherapy
19.
Front Immunol ; 12: 788769, 2021.
Article in English | MEDLINE | ID: covidwho-1581323

ABSTRACT

COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses are essential for viral clearance and disease control, however, remarkably decreased immune cell numbers and exhaustion of host cellular immune responses are commonly observed in patients with COVID-19. This is of concern as it is closely associated with disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for multiple immune inhibitory receptors, whose expression can be upregulated by viral infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune responses, dendritic cell (DC) maturation, and B cell antibody production. It also induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2 type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor (KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G can induce profound immune suppression, which favours the escape of SARS-CoV-2 from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better understanding of COVID-19 disease progression and identify potential immunointerventions to counteract SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , HLA-G Antigens/immunology , Immune Tolerance/immunology , Humans , SARS-CoV-2/immunology
20.
Front Immunol ; 12: 792448, 2021.
Article in English | MEDLINE | ID: covidwho-1581318

ABSTRACT

Both severe SARS-CoV-2 infections and bacterial sepsis exhibit an immunological dyscrasia and propensity for secondary infections. The nature of the immunological dyscrasias for these differing etiologies and their time course remain unclear. In this study, thirty hospitalized patients with SARS-CoV-2 infection were compared with ten critically ill patients with bacterial sepsis over 21 days, as well as ten healthy control subjects. Blood was sampled between days 1 and 21 after admission for targeted plasma biomarker analysis, cellular phenotyping, and leukocyte functional analysis via enzyme-linked immunospot assay. We found that circulating inflammatory markers were significantly higher early after bacterial sepsis compared with SARS-CoV-2. Both cohorts exhibited profound immune suppression through 21 days (suppressed HLA-DR expression, reduced mononuclear cell IFN-gamma production), and expanded numbers of myeloid-derived suppressor cells (MDSCs). In addition, MDSC expansion and ex vivo production of IFN-gamma and TNF-alpha were resolving over time in bacterial sepsis, whereas in SARS-CoV-2, immunosuppression and inflammation were accelerating. Despite less severe initial physiologic derangement, SARS-CoV-2 patients had similar incidence of secondary infections (23% vs 30%) as bacterial sepsis patients. Finally, COVID patients who developed secondary bacterial infections exhibited profound immunosuppression evident by elevated sPD-L1 and depressed HLA-DR. Although both bacterial sepsis and SARS-CoV-2 are associated with inflammation and immune suppression, their immune dyscrasia temporal patterns and clinical outcomes are different. SARS-CoV-2 patients had less severe early inflammation and organ dysfunction but had persistent inflammation and immunosuppression and suffered worse clinical outcomes, especially when SARS-CoV-2 infection was followed by secondary bacterial infection.


Subject(s)
Bacterial Infections/immunology , COVID-19/immunology , Immune Tolerance/immunology , Sepsis/immunology , Adult , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL